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The paper presents solutions to the problems of plane Couette
flow, axial flow in an annulus between two infinite cylinders, and
flow between two rotating cylinders. Taking into account energy
dissipation and the temperature dependence of viscosity, as given by
Reynolds’s relation

B = po exp (— 8T) (ps, B = const) .
Two types of boundary conditions are considered: a) the two surfaces
are held at constant (but in general not equal) temperatures; b) one
surface is held at a constant temperature, the other surface is in-
sulated.

Nonisothermal steady flow in simple conduits with dissipation of
energy and temperature-dependent viscosity has been studied by
several authors [1-11], In most of these papers [1~6] viscosity was
assumed to be a hyperbolic function of temperature, viz.

1
B=bny raf(T—T,) °

Under this assumption the energy equation is linear in temperature
and can be easily integrated. Couette flow with an exponential
viscosity-temperature relation.
B = poe T (no B = const); (0.1)
was studied in [7, 8]. Gouette flow with a general u(T) relation was
studied in (9).

Forced flow in a plane conduit and in a circular tube with a
general U(T) relation was studied in [10]. In particular, it has been
shown in [10] that in the case of sufficiently strong dependence of
viscosity on temperature there can exist a critical value of the pres-
sure gradient, such that a steady flow is possible only for pressure
gradients below this critical value.

In a previous work [11] the authors studied Poiseuille flow in a
circular tube with an exponential p(T) relation. This thermohydrody-
namic problem was reduced to the problem of a thermal explosion in
a cylindrical domain, which led to the existence of a critical regime,
The critical conditions for the hydrodynamic thermal "explosion” and
the temperature and velocity profiles were calculated.

In this paper we treat the problems of Couette flow, pressureless
axial flow in an annulus, and flow between two rotating cylinders
taking into account dissipation and the variation of viscosity with
temperature according to Reynolds’s law (0.1). The treatment of the
Couette flow problem differs from that given in [8] in that the
constants of integration are found by elementary methods, whereas
in [8] this step involved considerable difficulties, The solution to the
two other problems is then based on the Couette problem,

1. Flow between two parallel plates. Consider a
layer of viscous fluid bounded by two infinite flat
plates y = h and y = =h. The upper plate moves with
a constant velocity V in the positive x direction. The
plates are held at constant temperatures Ty and T,
(To > Ty). The dimensionless momentum and energy
equations are, then,

% o/ dv N\t
, W+k€°<—d—n‘> —Oy (1'1)

where dimensionless variables are defined as

<

L, 0=B(T—Ty), 1=

U=Tv

S

+

k=20 oxp (—BTY). (1.2)

A

Here J is the mechanical equivalent of heat and A is
the thermal conductivity of the fluid. The boundary
conditions are

v=1, 6=0 atn=1

(1.3)
=0, 8=20, at N=—1, 8 =8(To—Ti).

The first equation in (1.1) yields
ety [dny=¢c, (1.4)

where c is a constant of integration. Eliminating
dv/dn between (1.1) and (1.4), we obtain

@0 / dn? + ke%® = 0. (1.5)

This equation appears in the problem of a thermal
explosion in a plane layer [12]. Its solution is

— a.,»_.—
= G £ Vit (1.6)

where a and b are constants of integration. Since the
hyperbolic cosine is an even function, and since
there are two signs in front of the radical, we may
choose b > 0. In that case, in order to satisfy the
boundary conditions (1.3), the radical should be
taken with the plus sign. We rewrite (1.6) in the
form

8=1Ina—2Inch (b + V akety). (1.7
Substituting (1.7) into (1.4), we obtain an equation
for the velocity v

dy ac

M cna(b+ ¥ aake™n)

Integrating this equation and taking account of the
first boundary condition in (1.3), we obtain

v=1—V2a]k(th(+ V] .ake®) —
—th(b+ V1] aken)] . (1.8)

The remaining three boundary conditions yield

ch? (b + V[ ake?) = a, ch® (b ;-Vli/ sake?) = ae-% ,
th (b + V T30k — th (b — V T sake%) = VI kT a. (1.9)
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These three transcendental equations determine the
constants of integration a, b, ¢. The first two equa-
tions in {(1.9) yield

th? (b + VT ake?) = (a—1) ] a,
th? (b— V1] pakc?) = (ae% — 1)/ ae~%
These, together with the third equation in (1.9), yield

= o7 gk et — 1) (1.10)
From (1.10) it is clear that when k varies from 0 to
 the value of the constant a first monotonically
decreases to its minimum value @y = exp 8, attained
at kg = 2 (exp 6 — 1), and thenmonotonically increases
to =,

The first two equations in (1.9) yield

b-+Vighd=In(Va+Va—1),

P (1.11)
b — VT ake?= +In (Vae® + Vae® —1).

In the second of these the logarithm changes sign
when k passes through k. Solving (1.11), we obtain

b=1/n(Va+Va—1)tIn(Vae+

Vet =1, (1.12)
c=1/V2(akn(Va-+Va—1)F
Fn(Vae® + Va—e:*’.aj)]. (1.13)

The upper sign corresponds to k < k;, the lower
sign to k > ky. Thus, all constants of integration
have been found. We shall write down the values
of these constants for two special cases:

a) Both plates are held at the same temperature,
6= 0. Then

a=1+k/8, b=0,

c=V2jakln (Va+Va—1). (1.14)

b) The lower plate is insulated, dodn= 0 at n =
1. Substituting (1.7) into this condition, we obtain

b— V7, ake® =0.

Taking account of (1.11), we see that this condition
is satisfied by 8y = In a. The constants of integra-
tion are then

a=1+1/sk b="0n(Va+Va—1),

e=V2/akin(Va+Va—1). (1.15)

In both cases the maximum temperature‘is 0 =
= In a. In the first case this temperature is found

at the center plane, in the second case it is found
at the lower, insulated, plate.

For 9, = 0, taking the limits of (1.7) and (1.8) for
k — 0 (A — «), we obtain

8=0,v="Y00+mn), (1.16)
i.e., the solution to the isothermal Couette flow pro-
blem.

2. Axial flow in an annular gap between two cylin-
ders. Consider an annulus of viscous fluid confined
between two infinite concentric cylinders. The inner
cylinder moves with a constant velocity V in the posi-
tive direction of the axis z and the outer cylinder is
fixed. The radius and temperature of the inner cylin-
der are Ry, Ty The dimensionless momentum and
energy equations are

d ([ e dvy o d% 1 b o/ dv
wRE)=0 (g =0

b= e

where 6 and k are the same as in the first problem.
The boundary conditions are

v=0, 6 =0 at £=1,
' (2.2)

v :1, [¢] :80 at E:d(d:Ho/Rl).

We shall reduce this problem tc the form of the
previous problem. The first equation in (2.1) yields

e %Edy [dE = ¢, . (2.3)

Substituting (2.3) into the second equation in (2.1},
we obtain

a9 1 d9 key?
Fri R+, 2.4)

Introducing the variables

n=1—2lm§/ ndw=1-—y

we transform (2.3) and (2.4) into

pode

add 2,0 —
= pre - ke2e® =0

(o= __i‘f_‘i) . 2.5)
The boundary conditions (2.2) then become

w=1, 6=0 at n=1,

w=0 6=6, at n=—1. (2.6)

The transformed equations (2.5) and boundary condi -
tions (2.6) are identical to the corresponding equa-
tions (1.4), (1.5), with the boundary conditions (1.3),
in the Couette problem.

Now we can easily write down the expressions for
the temperature and velocity profiles for the problem
of axial flow in an annulus without pressure gradients:

0=lia—2lnch(b—a VilaknVdig, (2.7
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v=V2a/kith(b—1/yc;Ind VT ,ak) —
—th(p—a Vi gklnVd/E)]. (2.8)

The constants @ and b are determined from (1.10) and
(1.12}), and ¢, = —¢/In d, where c is given by (1,13).

Consider now two special cases:

a) Both cylinders are held at the same tempera-
ture, 9, = 0. The constants a, b, and ¢ are given by
{1.14). The maximum temperature ln a is attained
atn =0, or £ =Y4d.

b) The inner cylinder is insulated, d6/d = 0 at
§ = d. The constants &, b, ¢ are given by (1.15).

For 9, = 0, taking the limit k — 0, we obtain, in
accordance with (1.16), 6 = 0, v = 1n £ /In d. This
is the solution of the isothermal problem [1], with
the appropriate change in notation.

3. Flow between two rotating cylinders. Consider
again an annulus of fluid confined between two infinite
coaxial cylinders. Let the inner cylinder be fixed and
let the outer cylinder rotate in the direction of in-
creasing ¢ with a constant angular velocity Q. The
radii and temperatures of the two cylinders are Ry,
R; and T, Ty, respectively.

This problem has a practical application in vis-
cometry in the calculation of the frictional heating
of the fluid, which is especially important in the
viscometry of highly viscous fluids in which neglect
of frictional heating may lead to serious errors.

The case of a hyperbolic viscosity-temperature re-
lation was treated in [3].

The dimensionless form of the governing equations

is

—dg— (e‘“é“‘%) =0,

R R L e

Here £, 0, and k are the same as in the previous
cases (in the definition of k we use V = QR;). The
boundary conditions are
®’ 21, 8 =0 at E =1,
o =0,0 =0, at t=d (d= Ry/R). 3.2)

The first equation in (3.1) yields
. do'
e 9%3_7{:'_ ==Cy. (3-3)

Eliminating dw'/d¢ from (3.1) by means of (3.3), we
obtain

z""égg"'kzc‘l ¢ = 0. 3.4)

The substitution

0 —u-+2Ink, n=1—2Ink/Ind (3.5

reduces (3.3) and (3.4) to the form

. @ Ind
e %“?+kc=eu=o (cz_“_lzf_). (3.6)

do’
dn =6

The boundary conditions (3.2) become

o=1 u=0 at n=1,

© =0 u=0,—2Ilnd at n=—1. 3.7)

Thus we have reduced this problem to the form dis -~
cussed in the first section. Now we can write down

the expressions for the temperature and angular
velocity profiles for the present problem,

=Inat*—2Inch(b—c, V' ] @k nVd/E), (3.9)

o'=1—V2a[kith(b—e;! [ Ind V] 0k }—
—th{b—e, Vi ek lnVd/E)]. (3.9

The constants of integration a, b, c;, as determined
by (1.10), (1.12), (1.13), (3.5), and (3.6), are

a=141/&1( )k + % /dP—1)?,
b=1/ylln (Va+Va—1)x

+1nV adie % + Vad?e% — 1)},

e = — ]T:TI/ZZTUH(VE—F Va—-—i)IF

F In(V ad?e% + VadPe % —1)]. (3.10)
The upper sign corresponds to k < kg, the lower sign
to k > ky. In the present case

ko = 2 (e —1).

The case when one of the cylinders is insulated
requires special treatment. In this case one cannot
avoid the transcendental system of equations for the
constants of integration. When the temperature 8,
of the inner cylinder is known, then the constants
of integration are -given by (3.10). But when the in-
ner cylinder is insulated, the temperature 6, is an
unknown variable, determined by the condition
de/d¢ = 0 at £ = d. Substituting (3. 8) into this condi-~
tion, we obtain i

th(b+1/.¢,Ind YV 2/ak) = ¢, V 2Jak. (3.11)
Since, by assumption, the fluid rotates in the direc-
tion of increasing ¢, then from (3.3) we have ¢, >

> 0 and, consequently, the right side of (3.11) is
positive. Therefore the argument of the hyperbolic
tangent must be positive. Returning to the second
equation in (1.11), we conclude that the logarithm
should be taken with the plus sign. Therefore



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 33

equations (3.10) must be taken with the upper sign.
Let us transform equation (3.11), Since © = G
at £ = d, Eq. (3.8) yields

ch? (b + Y lndV‘/gak) = ad® %,

Hence

th(+1/sealndV1]0k) =V 1—e% [ad®.

Using this relation and substituting ¢, from (3.10)
into (3.11), we obtain

8,

@_—£Ly1n Vat Va1
. ad® Vad”e‘eo + Vadie'e" —1

+1lnd=0. (3.12)

This equation, together with the expression for a in
(3.10), determines the unknown temperature 9, of
the inner cylinder,

Now let us calculate the torque, which is a basic
parameter in viscometry. The moment per unit
length acting on the outer cylinder is M = 2R Tro
(R4), where Tro(R,) is the tangential stress at the
surface of the outer cylinder, equal to

o (Re) = Qu(TE G|,

Using (0.1) and (3.3), we obtain, finally,

M = 2nR2Qcp, exp (— pTy). (3.13)

In conclusion, we note the following special property of equation
(1.5). It is known from the theory of the thermal explosion [12] that
this equation does not admit a solution for all values of the factor 45*
in front of the exponential, but can be solved only for values 6 < &,
where &* is a critical value (in the case of a plane layer 6* = 0. 88
for 8, = 0). For every value of & there exist two solutions, i.e.
two temperature profiles, and in the thermal explosion problem the
solution corresponding to the higher profile is unstable, When é§ = &*
the two solutjons coincide,

An investigation of the function &(k) = ke? in the present prob-
lem shows that this curve reaches a maximum at some point k = k¥,
which corresponds to &*. When k passes through k* the solution passes
from one branch 1o the other. The unstable solution of the thermal
explosion problem corresponds in the present problem to an ordinary
solution for k > k¥,
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